G. Abou-sleymane, F. Chalmel, D. Helmlinger, A. Lardenois, C. Thibault et al., Polyglutamine expansion causes neurodegeneration by altering the neuronal differentiation program, Human Molecular Genetics, vol.15, issue.5, pp.691-703, 2006.
DOI : 10.1093/hmg/ddi483

URL : https://hal.archives-ouvertes.fr/hal-00187833

A. S. Saudou, F. , and H. S. , Phosphorylation of huntingtin by cyclin-dependent kinase 5 is induced by DNA damage and regulates wild-type and mutant huntingtin toxicity in neurons, J Neurosci, vol.27, pp.7318-7328, 2007.

M. Arrasate, S. Mitra, E. S. Schweitzer, M. R. Segal, and S. Finkbeiner, Inclusion body formation reduces levels of mutant huntingtin and the risk of neuronal death, Nature, vol.19, issue.7010, pp.805-810, 2004.
DOI : 10.1016/j.nbd.2004.04.001

A. Bachoud-levi, C. Bourdet, P. Brugieres, J. P. Nguyen, T. Grandmougin et al., Safety and Tolerability Assessment of Intrastriatal Neural Allografts in Five Patients with Huntington's Disease, Experimental Neurology, vol.161, issue.1, pp.194-202, 2000.
DOI : 10.1006/exnr.1999.7239

A. C. Bachoud-levi, V. Gaura, P. Brugieres, J. P. Lefaucheur, M. F. Boisse et al., Effect of fetal neural transplants in patients with Huntington's disease 6 years after surgery: a long-term follow-up study, The Lancet Neurology, vol.5, issue.4, pp.303-309, 2006.
DOI : 10.1016/S1474-4422(06)70381-7

A. C. Bachoud-levi, P. Remy, J. P. Nguyen, P. Brugieres, J. P. Lefaucheur et al., Motor and cognitive improvements in patients with Huntington's disease after neural transplantation, The Lancet, vol.356, issue.9246, pp.1975-1979, 2000.
DOI : 10.1016/S0140-6736(00)03310-9

G. P. Bates, Mouse Models of Triplet Repeat Diseases, Molecular Biotechnology, vol.32, issue.2, pp.147-158, 2006.
DOI : 10.1385/MB:32:2:147

M. F. Beal and F. R. , Experimental therapeutics in transgenic mouse models of Huntington's disease, Nature Reviews Neuroscience, vol.40, issue.5, pp.373-384, 2004.
DOI : 10.1038/ng864

N. F. Bence, R. M. Sampat, and K. R. , Impairment of the Ubiquitin-Proteasome System by Protein Aggregation, Science, vol.292, issue.5521, pp.1552-1555, 2001.
DOI : 10.1126/science.292.5521.1552

E. J. Bennett, T. A. Shaler, B. Woodman, K. Y. Ryu, T. S. Zaitseva et al., Global changes to the ubiquitin system in Huntington's disease, Nature, vol.353, issue.7154, pp.704-708, 2007.
DOI : 10.1038/nature06022

R. A. Bodner, T. F. Outeiro, S. Altmann, M. M. Maxwell, S. H. Cho et al., Pharmacological promotion of inclusion formation: A therapeutic approach for Huntington's and Parkinson's diseases, Proceedings of the National Academy of Sciences, vol.103, issue.11, pp.4246-4251, 2006.
DOI : 10.1073/pnas.0511256103

N. M. Bonini, Chaperoning brain degeneration, Proceedings of the National Academy of Sciences, vol.99, issue.Supplement 4, pp.16407-16411, 2002.
DOI : 10.1073/pnas.152330499

URL : http://www.ncbi.nlm.nih.gov/pmc/articles/PMC139901

N. M. Bonini, L. Spada, and A. R. , Silencing Polyglutamine Degeneration with RNAi, Neuron, vol.48, issue.5, pp.715-718, 2005.
DOI : 10.1016/j.neuron.2005.11.008

M. Borrell-pages, D. Zala, S. Humbert, and F. Saudou, Huntington???s disease: from huntingtin function and dysfunction to therapeutic strategies, Cellular and Molecular Life Sciences, vol.63, issue.22, pp.2642-2660, 2006.
DOI : 10.1007/s00018-006-6242-0

J. J. Kahle, H. T. Orr, and Z. H. , Duplication of Atxn1l suppresses SCA1 neuropathology by decreasing incorporation of polyglutamine-expanded ataxin-1 into native complexes

A. B. Bowman, S. Y. Yoo, N. P. Dantuma, and Z. H. , Neuronal dysfunction in a polyglutamine disease model occurs in the absence of ubiquitin-proteasome system impairment and inversely correlates with the degree of nuclear inclusion formation, Human Molecular Genetics, vol.14, issue.5, pp.679-691, 2005.
DOI : 10.1093/hmg/ddi064

C. M. Chen, Y. R. Wu, M. L. Cheng, J. L. Liu, Y. M. Lee et al., Increased oxidative damage and mitochondrial abnormalities in the peripheral blood of Huntington???s disease patients, Biochemical and Biophysical Research Communications, vol.359, issue.2, pp.335-340, 2007.
DOI : 10.1016/j.bbrc.2007.05.093

H. K. Chen, P. Fernandez-funez, S. F. Acevedo, Y. C. Lam, M. D. Kaytor et al., Interaction of Akt-Phosphorylated Ataxin-1 with 14-3-3 Mediates Neurodegeneration in Spinocerebellar Ataxia Type 1, Cell, vol.113, issue.4, pp.457-468, 2003.
DOI : 10.1016/S0092-8674(03)00349-0

V. Chopra, J. H. Fox, G. Lieberman, K. Dorsey, W. Matson et al., A small-molecule therapeutic lead for Huntington's disease: Preclinical pharmacology and efficacy of C2-8 in the R6/2 transgenic mouse, Proceedings of the National Academy of Sciences, vol.104, issue.42, pp.16685-16689, 2007.
DOI : 10.1073/pnas.0707842104

E. Colin, E. Regulier, V. Perrin, A. Durr, A. Brice et al., Akt is altered in an animal model of Huntington's disease and in patients, European Journal of Neuroscience, vol.293, issue.6, pp.1478-1488, 2005.
DOI : 10.1111/j.1460-9568.2005.03985.x

L. Cui, H. Jeong, F. Borovecki, C. N. Parkhurst, N. Tanese et al., Transcriptional Repression of PGC-1?? by Mutant Huntingtin Leads to Mitochondrial Dysfunction and Neurodegeneration, Cell, vol.127, issue.1, pp.59-69, 2006.
DOI : 10.1016/j.cell.2006.09.015

C. J. Cummings, M. A. Mancini, B. Antalffy, D. B. Defranco, H. T. Orr et al., Chaperone suppression of aggregation and altered subcellular proteasome localization imply protein misfolding in SCA1, Nature Genetics, vol.19, issue.2, pp.148-154, 1998.
DOI : 10.1038/502

C. J. Cummings, E. Reinstein, Y. Sun, B. Antalffy, Y. Jiang et al., Mutation of the E6-AP Ubiquitin Ligase Reduces Nuclear Inclusion Frequency While Accelerating Polyglutamine-Induced Pathology in SCA1 Mice, Neuron, vol.24, issue.4, pp.879-892, 1999.
DOI : 10.1016/S0896-6273(00)81035-1

S. W. Davies, M. Turmaine, B. A. Cozens, M. Difiglia, A. H. Sharp et al., Formation of Neuronal Intranuclear Inclusions Underlies the Neurological Dysfunction in Mice Transgenic for the HD Mutation, Cell, vol.90, issue.3, pp.537-548, 1997.
DOI : 10.1016/S0092-8674(00)80513-9

A. Demuro, E. Mina, R. Kayed, S. C. Milton, I. Parker et al., Calcium Dysregulation and Membrane Disruption as a Ubiquitous Neurotoxic Mechanism of Soluble Amyloid Oligomers, Journal of Biological Chemistry, vol.280, issue.17, pp.17294-17300, 2005.
DOI : 10.1074/jbc.M500997200

U. A. Desai, J. Pallos, A. A. Ma, B. R. Stockwell, L. M. Thompson et al., Biologically active molecules that reduce polyglutamine aggregation and toxicity, Human Molecular Genetics, vol.15, issue.13, pp.2114-2124, 2006.
DOI : 10.1093/hmg/ddl135

M. Difiglia, E. Sapp, K. O. Chase, S. W. Davies, G. P. Bates et al., Aggregation of Huntingtin in Neuronal Intranuclear Inclusions and Dystrophic Neurites in Brain, Science, vol.277, issue.5334, pp.1990-1993, 1997.
DOI : 10.1126/science.277.5334.1990

L. Djousse, B. Knowlton, L. A. Cupples, K. Marder, I. Shoulson et al., Weight loss in early stage of Huntington's disease, Neurology, vol.59, issue.9, pp.1325-1330, 2002.
DOI : 10.1212/01.WNL.0000031791.10922.CF

I. Dragatsis, M. S. Levine, and S. Zeitlin, Inactivation of Hdh in the brain and testis results in progressive neurodegeneration and sterility in mice, Nat Genet, vol.26, pp.300-306, 2000.

D. E. Ehrnhoefer, J. Bieschke, A. Boeddrich, M. Herbst, L. Masino et al., EGCG redirects amyloidogenic polypeptides into unstructured, off-pathway oligomers, Nature structural & molecular biology, vol.266, issue.6, pp.558-566, 2008.
DOI : 10.1006/jmbi.2001.4538

D. E. Ehrnhoefer, M. Duennwald, P. Markovic, J. L. Wacker, S. Engemann et al., Green tea (-)-epigallocatechin-gallate modulates early events in huntingtin misfolding and reduces toxicity in Huntington's disease models, Human Molecular Genetics, vol.15, issue.18, pp.2743-2751, 2006.
DOI : 10.1093/hmg/ddl210

E. S. Emamian, M. D. Kaytor, L. A. Duvick, T. Zu, S. K. Tousey et al., Serine 776 of Ataxin-1 Is Critical for Polyglutamine-Induced Disease in SCA1 Transgenic Mice, Neuron, vol.38, issue.3, pp.375-387, 2003.
DOI : 10.1016/S0896-6273(03)00258-7

R. J. Ferrante, J. K. Kubilus, J. Lee, H. Ryu, A. Beesen et al., Histone deacetylase inhibition by sodium butyrate chemotherapy ameliorates the neurodegenerative phenotype in Huntington's disease mice, J Neurosci, vol.23, pp.9418-9427, 2003.

N. Fujikake, Y. Nagai, H. A. Popiel, Y. Okamoto, M. Yamaguchi et al., Heat Shock Transcription Factor 1-activating Compounds Suppress Polyglutamine-induced Neurodegeneration through Induction of Multiple Molecular Chaperones, Journal of Biological Chemistry, vol.283, issue.38, pp.26188-26197, 2008.
DOI : 10.1074/jbc.M710521200

J. Gafni and E. L. , Calpain activation in Huntington's disease, J Neurosci, vol.22, pp.4842-4849, 2002.

G. Gardian, S. E. Browne, D. K. Choi, P. Klivenyi, J. Gregorio et al., Neuroprotective Effects of Phenylbutyrate in the N171-82Q Transgenic Mouse Model of Huntington's Disease, Journal of Biological Chemistry, vol.280, issue.1, pp.556-563, 2005.
DOI : 10.1074/jbc.M410210200

J. R. Gatchel and Z. H. , Diseases of Unstable Repeat Expansion: Mechanisms and Common Principles, Nature Reviews Genetics, vol.101, issue.10, pp.743-755, 2005.
DOI : 10.1038/nrg1691

R. Geiss-friedlander and F. Melchior, Concepts in sumoylation: a decade on, Nature Reviews Molecular Cell Biology, vol.1773, issue.12, pp.947-956, 2007.
DOI : 10.1038/nrm2293

J. M. Gil and A. C. Rego, Mechanisms of neurodegeneration in Huntington???s disease, European Journal of Neuroscience, vol.35, issue.1, pp.2803-2820, 2008.
DOI : 10.1111/j.1460-9568.2008.06310.x

H. Goehler, M. Lalowski, U. Stelzl, S. Waelter, M. Stroedicke et al., A Protein Interaction Network Links GIT1, an Enhancer of Huntingtin Aggregation, to Huntington's Disease, Molecular Cell, vol.15, issue.6, pp.853-865, 2004.
DOI : 10.1016/j.molcel.2004.09.016

Y. P. Goldberg, D. W. Nicholson, D. M. Rasper, M. A. Kalchman, H. B. Koide et al., Cleavage of huntingtin by apopain, a proapoptotic cysteine protease, is modulated by the polyglutamine tract, Nature Genetics, vol.53, issue.4, pp.442-449, 1996.
DOI : 10.1038/377248a0

R. K. Graham, Y. Deng, E. J. Slow, B. Haigh, N. Bissada et al., Cleavage at the Caspase-6 Site Is Required for Neuronal Dysfunction and Degeneration Due to Mutant Huntingtin, Cell, vol.125, issue.6, pp.1179-1191, 2006.
DOI : 10.1016/j.cell.2006.04.026

C. A. Gutekunst, S. H. Li, H. Yi, J. S. Mulroy, S. Kuemmerle et al., Nuclear and neuropil aggregates in Huntington's disease: relationship to neuropathology, J Neurosci, vol.19, pp.2522-2534, 1999.

P. Harjes and W. E. , The hunt for huntingtin function: interaction partners tell many different stories, Trends in Biochemical Sciences, vol.28, issue.8, pp.425-433, 2003.
DOI : 10.1016/S0968-0004(03)00168-3

S. Q. Harper, P. D. Staber, X. He, S. L. Eliason, I. H. Martins et al., RNA interference improves motor and neuropathological abnormalities in a Huntington's disease mouse model, Proceedings of the National Academy of Sciences, vol.102, issue.16, pp.5820-5825, 2005.
DOI : 10.1073/pnas.0501507102

D. G. Hay, K. Sathasivam, S. Tobaben, B. Stahl, M. Marber et al., Progressive decrease in chaperone protein levels in a mouse model of Huntington's disease and induction of stress proteins as a therapeutic approach, Human Molecular Genetics, vol.13, issue.13, pp.1389-1405, 2004.
DOI : 10.1093/hmg/ddh144

V. Heiser, S. Engemann, W. Brocker, I. Dunkel, A. Boeddrich et al., Identification of benzothiazoles as potential polyglutamine aggregation inhibitors of Huntington's disease by using an automated filter retardation assay, Proceedings of the National Academy of Sciences, vol.99, issue.Supplement 4, pp.16400-16406, 2002.
DOI : 10.1073/pnas.182426599

V. Heiser, E. Scherzinger, A. Boeddrich, E. Nordhoff, R. Lurz et al., Inhibition of huntingtin fibrillogenesis by specific antibodies and small molecules: Implications for Huntington's disease therapy, Proceedings of the National Academy of Sciences, vol.97, issue.12, pp.6739-6744, 2000.
DOI : 10.1073/pnas.110138997

D. Helmlinger, G. Yvert, S. Picaud, K. Merienne, J. Sahel et al., Progressive retinal degeneration and dysfunction in R6 Huntington's disease mice, Human Molecular Genetics, vol.11, issue.26, pp.3351-3359, 2002.
DOI : 10.1093/hmg/11.26.3351

S. Noori, A. Mahal, P. A. Lowden, J. S. Steffan, J. L. Marsh et al., Suberoylanilide hydroxamic acid, a histone deacetylase inhibitor, ameliorates motor deficits in a mouse model of Huntington's disease, Proc Natl Acad Sci U S A, vol.100, pp.2041-2046, 2003.

A. Hodges, A. D. Strand, A. K. Aragaki, A. Kuhn, T. Sengstag et al., Regional and cellular gene expression changes in human Huntington's disease brain, Human Molecular Genetics, vol.15, issue.6, pp.965-977, 2006.
DOI : 10.1093/hmg/ddl013

S. Humbert, E. A. Bryson, F. P. Cordelieres, N. C. Connors, S. R. Datta et al., The IGF-1/Akt Pathway Is Neuroprotective in Huntington's Disease and Involves Huntingtin Phosphorylation by Akt, Developmental Cell, vol.2, issue.6, pp.831-837, 2002.
DOI : 10.1016/S1534-5807(02)00188-0

N. R. Jana, E. A. Zemskov, W. Gh, and N. Nukina, Altered proteasomal function due to the expression of polyglutamine-expanded truncated N-terminal huntingtin induces apoptosis by caspase activation through mitochondrial cytochrome c release, Human Molecular Genetics, vol.10, issue.10, pp.1049-1059, 2001.
DOI : 10.1093/hmg/10.10.1049

B. G. Jenkins, W. J. Koroshetz, M. F. Beal, and R. B. , Evidence for irnnairment of energy metabofism in vivo in Huntington's disease using localized 1H NMR spectroscopy, Neurology, vol.43, issue.12, pp.2689-2695, 1993.
DOI : 10.1212/WNL.43.12.2689

H. Jeong, F. Then, T. J. Melia, . Jr, J. R. Mazzulli et al., Acetylation Targets Mutant Huntingtin to Autophagosomes for Degradation, Cell, vol.137, issue.1, pp.60-72, 2009.
DOI : 10.1016/j.cell.2009.03.018

N. D. Jorgensen, J. M. Andresen, J. E. Pitt, M. A. Swenson, H. Y. Zoghbi et al., Hsp70/Hsc70 regulates the effect phosphorylation has on stabilizing ataxin-1, Journal of Neurochemistry, vol.24, issue.6, pp.2040-2048, 2007.
DOI : 10.1111/j.1471-4159.2007.04678.x

M. A. Kalchman, R. K. Graham, G. Xia, H. B. Koide, J. G. Hodgson et al., Huntingtin Is Ubiquitinated and Interacts with a Specific Ubiquitin-conjugating Enzyme, Journal of Biological Chemistry, vol.271, issue.32, pp.19385-19394, 1996.
DOI : 10.1074/jbc.271.32.19385

L. S. Kaltenbach, E. Romero, R. R. Becklin, R. Chettier, R. Bell et al., Huntingtin Interacting Proteins Are Genetic Modifiers of Neurodegeneration, PLoS Genetics, vol.13, issue.5, p.82, 2007.
DOI : 10.1371/journal.pgen.0030082.st005

M. Katsuno, H. Adachi, M. Doyu, M. Minamiyama, C. Sang et al., Leuprorelin rescues polyglutamine-dependent phenotypes in a transgenic mouse model of spinal and bulbar muscular atrophy, Nature Medicine, vol.9, issue.6, pp.768-773, 2003.
DOI : 10.1038/nm878

M. Katsuno, H. Adachi, A. Kume, M. Li, Y. Nakagomi et al., Testosterone Reduction Prevents Phenotypic Expression in a Transgenic Mouse Model of Spinal and Bulbar Muscular Atrophy, Neuron, vol.35, issue.5, pp.843-854, 2002.
DOI : 10.1016/S0896-6273(02)00834-6

M. Katsuno, H. Adachi, F. Tanaka, and G. Sobue, Spinal and bulbar muscular atrophy: ligand-dependent pathogenesis and therapeutic perspectives, Journal of Molecular Medicine, vol.82, issue.5, pp.298-307, 2004.
DOI : 10.1007/s00109-004-0530-7

R. Kayed, E. Head, J. L. Thompson, T. M. Mcintire, S. C. Milton et al., Common Structure of Soluble Amyloid Oligomers Implies Common Mechanism of Pathogenesis, Science, vol.300, issue.5618, pp.486-489, 2003.
DOI : 10.1126/science.1079469

R. Kayed, Y. Sokolov, B. Edmonds, T. M. Mcintire, S. C. Milton et al., Permeabilization of Lipid Bilayers Is a Common Conformation-dependent Activity of Soluble Amyloid Oligomers in Protein Misfolding Diseases, Journal of Biological Chemistry, vol.279, issue.45, pp.46363-46366, 2004.
DOI : 10.1074/jbc.C400260200

I. A. Klement, P. J. Skinner, M. D. Kaytor, H. Yi, S. M. Hersch et al., Ataxin-1 Nuclear Localization and Aggregation, Cell, vol.95, issue.1, pp.41-53, 1998.
DOI : 10.1016/S0092-8674(00)81781-X

Y. C. Lam, A. B. Bowman, P. Jafar-nejad, J. Lim, R. Richman et al., ATAXIN-1 Interacts with the Repressor Capicua in Its Native Complex to Cause SCA1 Neuropathology, Cell, vol.127, issue.7, pp.1335-1347, 2006.
DOI : 10.1016/j.cell.2006.11.038

B. R. Leavitt, J. A. Guttman, J. G. Hodgson, G. H. Kimel, R. Singaraja et al., Wild-Type Huntingtin Reduces the Cellular Toxicity of Mutant Huntingtin In Vivo, The American Journal of Human Genetics, vol.68, issue.2, pp.313-324, 2001.
DOI : 10.1086/318207

L. B. Li, Z. Yu, X. Teng, and N. M. Bonini, RNA toxicity is a component of ataxin-3 degeneration in Drosophila, Nature, vol.315, issue.7198, pp.1107-1111, 2008.
DOI : 10.1038/nature06909

S. H. Li and L. X. , Huntingtin???protein interactions and the pathogenesis of Huntington's disease, Trends in Genetics, vol.20, issue.3, pp.146-154, 2004.
DOI : 10.1016/j.tig.2004.01.008

S. Li and L. X. , Multiple pathways contribute to the pathogenesis of Huntington disease, Molecular Neurodegeneration, vol.1, issue.1, p.19, 2006.
DOI : 10.1186/1750-1326-1-19

J. Lim, J. Crespo-barreto, P. Jafar-nejad, A. B. Bowman, R. Richman et al., Opposing effects of polyglutamine expansion on native protein complexes contribute to SCA1, Nature, vol.437, issue.7188, pp.713-718, 2008.
DOI : 10.1038/nature06731

J. Lim, T. Hao, C. Shaw, A. J. Patel, G. Szabo et al., A Protein???Protein Interaction Network for Human Inherited Ataxias and Disorders of Purkinje Cell Degeneration, Cell, vol.125, issue.4, pp.801-814, 2006.
DOI : 10.1016/j.cell.2006.03.032

M. T. Lin and M. F. Beal, Mitochondrial dysfunction and oxidative stress in neurodegenerative diseases, Nature, vol.175, issue.7113, pp.787-795, 2006.
DOI : 10.1038/nature05292

W. Liu, L. A. Kennington, H. D. Rosas, S. Hersch, J. H. Cha et al., Linking SNPs to CAG repeat length in Huntington's disease patients, Nature Methods, vol.120, issue.11, pp.951-953, 2008.
DOI : 10.1089/hum.2007.116

A. Lunkes, K. S. Lindenberg, L. Ben-haiem, C. Weber, D. Devys et al., Proteases Acting on Mutant Huntingtin Generate Cleaved Products that Differentially Build Up Cytoplasmic and Nuclear Inclusions, Molecular Cell, vol.10, issue.2, pp.259-269, 2002.
DOI : 10.1016/S1097-2765(02)00602-0

A. Lunkes and J. L. Mandel, A cellular model that recapitulates major pathogenic steps of Huntington's disease, Human Molecular Genetics, vol.7, issue.9, pp.1355-1361, 1998.
DOI : 10.1093/hmg/7.9.1355

A. Lunkes, Y. Trottier, and J. L. Mandel, Pathological mechanisms in Huntington's disease and other polyglutamine expansion diseases, Essays In Biochemistry, vol.33, pp.149-163, 1998.
DOI : 10.1042/bse0330149

S. Luo, C. Vacher, J. E. Davies, and R. D. , Cdk5 phosphorylation of huntingtin reduces its cleavage by caspases, The Journal of Cell Biology, vol.22, issue.4, pp.647-656, 2005.
DOI : 10.1038/ng1095-155

R. Luthi-carter, S. A. Hanson, A. D. Strand, D. A. Bergstrom, W. Chun et al., Dysregulation of gene expression in the R6/2 model of polyglutamine disease: parallel changes in muscle and brain, Human Molecular Genetics, vol.11, issue.17, pp.1911-1926, 2002.
DOI : 10.1093/hmg/11.17.1911

R. Luthi-carter, A. D. Strand, S. A. Hanson, C. Kooperberg, G. Schilling et al., Polyglutamine and transcription: gene expression changes shared by DRPLA and Huntington's disease mouse models reveal context-independent effects, Human Molecular Genetics, vol.11, issue.17, pp.1927-1937, 2002.
DOI : 10.1093/hmg/11.17.1927

R. Luthi-carter, A. Strand, N. L. Peters, S. M. Solano, Z. R. Hollingsworth et al., Decreased expression of striatal signaling genes in a mouse model of Huntington's disease, Human Molecular Genetics, vol.9, issue.9, pp.1259-1271, 2000.
DOI : 10.1093/hmg/9.9.1259

I. Martianov, S. Viville, and D. I. , RNA Polymerase II Transcription in Murine Cells Lacking the TATA Binding Protein, Science, vol.298, issue.5595, pp.1036-1039, 2002.
DOI : 10.1126/science.1076327

A. Mccampbell, J. P. Taylor, A. A. Taye, J. Robitschek, M. Li et al., CREB-binding protein sequestration by expanded polyglutamine, Human Molecular Genetics, vol.9, issue.14, pp.2197-2202, 2000.
DOI : 10.1093/hmg/9.14.2197

P. J. Muchowski, G. Schaffar, A. Sittler, E. E. Wanker, M. K. Hayer-hartl et al., Hsp70 and Hsp40 chaperones can inhibit self-assembly of polyglutamine proteins into amyloid-like fibrils, Proceedings of the National Academy of Sciences, vol.97, issue.14, pp.7841-7846, 2000.
DOI : 10.1073/pnas.140202897

P. J. Muchowski and J. L. Wacker, Modulation of neurodegeneration by molecular chaperones, Nature Reviews Neuroscience, vol.19, issue.1, pp.11-22, 2005.
DOI : 10.1038/nrn1587

R. H. Myers, Huntington???s disease genetics, NeuroRX, vol.22, issue.2, pp.255-262, 2004.
DOI : 10.1602/neurorx.1.2.255

Y. Nagai, N. Fujikake, K. Ohno, H. Higashiyama, H. A. Popiel et al., Prevention of polyglutamine oligomerization and neurodegeneration by the peptide inhibitor QBP1 in Drosophila, Human Molecular Genetics, vol.12, issue.11, pp.1253-1259, 2003.
DOI : 10.1093/hmg/ddg144

Y. Nagai, T. Inui, H. A. Popiel, N. Fujikake, K. Hasegawa et al., A toxic monomeric conformer of the polyglutamine protein, Nature Structural & Molecular Biology, vol.13, issue.4, pp.332-340, 2007.
DOI : 10.1073/pnas.182426599

O. 'nuallain, B. Wetzel, and R. , Conformational Abs recognizing a generic amyloid fibril epitope, Proceedings of the National Academy of Sciences, vol.99, issue.3, pp.1485-1490, 2002.
DOI : 10.1073/pnas.022662599

J. M. Ordway, S. Tallaksen-greene, C. A. Gutekunst, E. M. Bernstein, J. A. Cearley et al., Ectopically Expressed CAG Repeats Cause Intranuclear Inclusions and a Progressive Late Onset Neurological Phenotype in the Mouse, Cell, vol.91, issue.6, pp.753-763, 1997.
DOI : 10.1016/S0092-8674(00)80464-X

A. V. Panov, C. A. Gutekunst, B. R. Leavitt, M. R. Hayden, J. R. Burke et al., Early mitochondrial calcium defects in Huntington's disease are a direct effect of polyglutamines, Nature Neuroscience, vol.5, pp.731-736, 2002.
DOI : 10.1038/nn884

R. Pardo, E. Colin, E. Regulier, P. Aebischer, N. Deglon et al., Inhibition of Calcineurin by FK506 Protects against Polyglutamine-Huntingtin Toxicity through an Increase of Huntingtin Phosphorylation at S421, Journal of Neuroscience, vol.26, issue.5, pp.1635-1645, 2006.
DOI : 10.1523/JNEUROSCI.3706-05.2006

M. F. Perutz, T. Johnson, M. Suzuki, and F. J. , Glutamine repeats as polar zippers: their possible role in inherited neurodegenerative diseases., Proceedings of the National Academy of Sciences, vol.91, issue.12, pp.5355-5358, 1994.
DOI : 10.1073/pnas.91.12.5355

E. L. Pfister, L. Kennington, J. Straubhaar, S. Wagh, W. Liu et al., Five siRNAs Targeting Three SNPs May Provide Therapy for Three-Quarters of Huntington's Disease Patients, Current Biology, vol.19, issue.9, pp.774-778, 2009.
DOI : 10.1016/j.cub.2009.03.030

H. Rangone, G. Poizat, J. Troncoso, C. A. Ross, M. E. Macdonald et al., The serum- and glucocorticoid-induced kinase SGK inhibits mutant huntingtin-induced toxicity by phosphorylating serine???421 of huntingtin, European Journal of Neuroscience, vol.276, issue.2, pp.273-279, 2004.
DOI : 10.1111/j.0953-816X.2003.03131.x

B. Ravikumar, C. Vacher, Z. Berger, J. E. Davies, S. Luo et al., Inhibition of mTOR induces autophagy and reduces toxicity of polyglutamine expansions in fly and mouse models of Huntington disease, Nature Genetics, vol.22, issue.6, pp.585-595, 2004.
DOI : 10.1073/pnas.0437870100

B. E. Riley and O. H. , Polyglutamine neurodegenerative diseases and regulation of transcription: assembling the puzzle, Genes & Development, vol.20, issue.16, pp.2183-2192, 2006.
DOI : 10.1101/gad.1436506

C. A. Ross and M. A. Poirier, Protein aggregation and neurodegenerative disease, Nature Medicine, vol.99, issue.7, pp.10-17, 2004.
DOI : 10.1038/nm1066

C. A. Ross and M. A. Poirier, Opinion: What is the role of protein aggregation in neurodegeneration?, Nature Reviews Molecular Cell Biology, vol.62, issue.11, pp.891-898, 2005.
DOI : 10.1016/S0733-8619(01)00020-2

U. Rub, R. A. De-vos, E. R. Brunt, T. Sebesteny, L. Schols et al., Spinocerebellar Ataxia Type 3 (SCA3): Thalamic Neurodegeneration Occurs Independently from Thalamic Ataxin-3 Immunopositive Neuronal Intranuclear Inclusions, Brain Pathology, vol.101, issue.3, pp.218-227, 2006.
DOI : 10.1146/annurev.neuro.23.1.217

I. Sanchez, C. Mahlke, and J. Yuan, Pivotal role of oligomerization in expanded polyglutamine neurodegenerative disorders, Nature, vol.19, issue.6921, pp.373-379, 2003.
DOI : 10.1038/nature01301

F. Saudou, S. Finkbeiner, D. Devys, and G. M. , Huntingtin Acts in the Nucleus to Induce Apoptosis but Death Does Not Correlate with the Formation of Intranuclear Inclusions, Cell, vol.95, issue.1, pp.55-66, 1998.
DOI : 10.1016/S0092-8674(00)81782-1

B. Schilling, J. Gafni, C. Torcassi, X. Cong, R. H. Row et al., Huntingtin Phosphorylation Sites Mapped by Mass Spectrometry: MODULATION OF CLEAVAGE AND TOXICITY, Journal of Biological Chemistry, vol.281, issue.33, pp.23686-23697, 2006.
DOI : 10.1074/jbc.M513507200

I. Schmitt, M. Linden, H. Khazneh, B. O. Evert, P. Breuer et al., Inactivation of the mouse Atxn3 (ataxin-3) gene increases protein ubiquitination, Biochemical and Biophysical Research Communications, vol.362, issue.3, pp.734-739, 2007.
DOI : 10.1016/j.bbrc.2007.08.062

H. G. Serra, C. E. Byam, J. D. Lande, S. K. Tousey, H. Y. Zoghbi et al., Gene profiling links SCA1 pathophysiology to glutamate signaling in Purkinje cells of transgenic mice, Human Molecular Genetics, vol.13, issue.20, pp.2535-2543, 2004.
DOI : 10.1093/hmg/ddh268

G. M. Shankar, S. Li, T. H. Mehta, A. Garcia-munoz, N. E. Shepardson et al., Amyloid-?? protein dimers isolated directly from Alzheimer's brains impair synaptic plasticity and memory, Nature Medicine, vol.28, issue.8, pp.837-842, 2008.
DOI : 10.1038/nm1782

J. Shao and D. M. , Polyglutamine diseases: emerging concepts in pathogenesis and therapy, Human Molecular Genetics, vol.16, issue.R2, pp.115-123, 2007.
DOI : 10.1093/hmg/ddm213

A. Sittler, R. Lurz, G. Lueder, J. Priller, H. Lehrach et al., Geldanamycin activates a heat shock response and inhibits huntingtin aggregation in a cell culture model of Huntington's disease, Human Molecular Genetics, vol.10, issue.12, pp.1307-1315, 2001.
DOI : 10.1093/hmg/10.12.1307

J. St-pierre, S. Drori, M. Uldry, J. M. Silvaggi, J. Rhee et al., Suppression of Reactive Oxygen Species and Neurodegeneration by the PGC-1 Transcriptional Coactivators, Cell, vol.127, issue.2, pp.397-408, 2006.
DOI : 10.1016/j.cell.2006.09.024

J. S. Steffan, N. Agrawal, J. Pallos, E. Rockabrand, L. C. Trotman et al., SUMO Modification of Huntingtin and Huntington's Disease Pathology, Science, vol.304, issue.5667, pp.100-104, 2004.
DOI : 10.1126/science.1092194

K. L. Sugars and R. D. , Transcriptional abnormalities in Huntington disease, Trends in Genetics, vol.19, issue.5, pp.233-238, 2003.
DOI : 10.1016/S0168-9525(03)00074-X

S. J. Tabrizi, A. M. Blamire, D. N. Manners, B. Rajagopalan, P. Styles et al., High-dose creatine therapy for Huntington disease: A 2-year clinical and MRS study, Neurology, vol.64, issue.9, pp.1655-1656, 2005.
DOI : 10.1212/01.WNL.0000160388.96242.77

K. Takeyama, S. Ito, A. Yamamoto, H. Tanimoto, T. Furutani et al., Androgen-Dependent Neurodegeneration by Polyglutamine-Expanded Human Androgen Receptor in Drosophila, Neuron, vol.35, issue.5, pp.855-864, 2002.
DOI : 10.1016/S0896-6273(02)00875-9

M. Tanaka, Y. Machida, S. Niu, T. Ikeda, N. R. Jana et al., Trehalose alleviates polyglutamine-mediated pathology in a mouse model of Huntington disease, Nature Medicine, vol.10, issue.2, pp.148-154, 2004.
DOI : 10.1038/nm985

V. Tarlac and E. Storey, Role of proteolysis in polyglutamine disorders, Journal of Neuroscience Research, vol.293, issue.3, pp.406-416, 2003.
DOI : 10.1002/jnr.10746

P. H. Van-bilsen, L. Jaspers, M. S. Lombardi, J. C. Odekerken, E. N. Burright et al., Identification and Allele-Specific Silencing of the Mutant Huntingtin Allele in Huntington's Disease Patient-Derived Fibroblasts, Human Gene Therapy, vol.19, issue.7, pp.710-719, 2008.
DOI : 10.1089/hum.2007.116

J. M. Van-raamsdonk, J. Pearson, D. A. Rogers, N. Bissada, A. W. Vogl et al., Loss of wild-type huntingtin influences motor dysfunction and survival in the YAC128 mouse model of Huntington disease, Human Molecular Genetics, vol.14, issue.10, pp.1379-1392, 2005.
DOI : 10.1093/hmg/ddi147

P. Verbessem, J. Lemiere, B. O. Eijnde, S. Swinnen, L. Vanhees et al., Creatine supplementation in Huntington's disease: A placebo-controlled pilot trial, Neurology, vol.61, issue.7, pp.925-930, 2003.
DOI : 10.1212/01.WNL.0000090629.40891.4B

J. L. Wacker, M. H. Zareie, H. Fong, M. Sarikaya, and M. P. , Hsp70 and Hsp40 attenuate formation of spherical and annular polyglutamine oligomers by partitioning monomer, Nature Structural & Molecular Biology, vol.91, issue.12, pp.1215-1222, 2004.
DOI : 10.1371/journal.pbio.0020321

D. M. Walsh and S. D. , A? Oligomers ? a decade of discovery, Journal of Neurochemistry, vol.279, issue.5, pp.1172-1184, 2007.
DOI : 10.1038/nn1630

J. Wang, S. Gines, M. E. Macdonald, and G. J. , Reversal of a full-length mutant huntingtin neuronal cell phenotype by chemical inhibitors of polyglutamine-mediated aggregation, BMC Neuroscience, vol.6, issue.1, p.1, 2005.
DOI : 10.1186/1471-2202-6-1

S. C. Warby, E. Y. Chan, M. Metzler, L. Gan, R. R. Singaraja et al., Huntingtin phosphorylation on serine 421 is significantly reduced in the striatum and by polyglutamine expansion in vivo, Human Molecular Genetics, vol.14, issue.11, pp.1569-1577, 2005.
DOI : 10.1093/hmg/ddi165

S. C. Warby, C. N. Doty, R. K. Graham, J. B. Carroll, Y. Z. Yang et al., Activated caspase-6 and caspase-6-cleaved fragments of huntingtin specifically colocalize in the nucleus, Human Molecular Genetics, vol.17, issue.15, pp.2390-2404, 2008.
DOI : 10.1093/hmg/ddn139

K. Watase, E. J. Weeber, B. Xu, B. Antalffy, L. Yuva-paylor et al., A Long CAG Repeat in the Mouse Sca1 Locus Replicates SCA1 Features and Reveals the Impact of Protein Solubility on Selective Neurodegeneration, Neuron, vol.34, issue.6, pp.905-919, 2002.
DOI : 10.1016/S0896-6273(02)00733-X

M. Waza, H. Adachi, M. Katsuno, M. Minamiyama, C. Sang et al., 17-AAG, an Hsp90 inhibitor, ameliorates polyglutamine-mediated motor neuron degeneration, Nature Medicine, vol.23, issue.10, pp.1088-1095, 2005.
DOI : 10.1046/j.1471-4159.2002.00998.x

C. L. Wellington, L. M. Ellerby, A. S. Hackam, R. L. Margolis, M. A. Trifiro et al., Caspase Cleavage of Gene Products Associated with Triplet Expansion Disorders Generates Truncated Fragments Containing the Polyglutamine Tract, Journal of Biological Chemistry, vol.273, issue.15, pp.9158-9167, 1998.
DOI : 10.1074/jbc.273.15.9158

J. K. White, W. Auerbach, M. P. Duyao, J. P. Vonsattel, J. F. Gusella et al., Huntingtin is required for neurogenesis and is not impaired by the Huntington's disease CAG expansion, Nature Genetics, vol.90, issue.4, pp.404-410, 1997.
DOI : 10.1016/0006-8993(88)90055-8

A. Williams, S. Sarkar, P. Cuddon, E. K. Ttofi, S. Saiki et al., Novel targets for Huntington's disease in an mTOR-independent autophagy pathway, Nature Chemical Biology, vol.4, issue.5, pp.295-305, 2008.
DOI : 10.1038/nchembio.79

A. Wyttenbach, S. Hands, M. A. King, K. Lipkow, and T. A. , Amelioration of protein misfolding disease by rapamycin: Translation or autophagy?, Autophagy, vol.4, issue.4, pp.542-545, 2008.
DOI : 10.4161/auto.6059

H. Xia, Q. Mao, S. L. Eliason, S. Q. Harper, I. H. Martins et al., RNAi suppresses polyglutamine-induced neurodegeneration in a model of spinocerebellar ataxia, Nature Medicine, vol.278, issue.8, pp.816-820, 2004.
DOI : 10.1038/nbt0502-497

A. Yanai, K. Huang, R. Kang, R. R. Singaraja, P. Arstikaitis et al., Palmitoylation of huntingtin by HIP14is essential for its trafficking and function, Nature Neuroscience, vol.406, issue.6, pp.824-831, 2006.
DOI : 10.1038/nn1702

S. Y. Yoo, M. E. Pennesi, E. J. Weeber, B. Xu, R. Atkinson et al., SCA7 Knockin Mice Model Human SCA7 and Reveal Gradual Accumulation of Mutant Ataxin-7 in Neurons and Abnormalities in Short-Term Plasticity, Neuron, vol.37, issue.3, pp.383-401, 2003.
DOI : 10.1016/S0896-6273(02)01190-X

G. Yvert, K. S. Lindenberg, S. Picaud, G. B. Landwehrmeyer, J. A. Sahel et al., Expanded polyglutamines induce neurodegeneration and trans-neuronal alterations in cerebellum and retina of SCA7 transgenic mice, Human Molecular Genetics, vol.9, issue.17, pp.2491-2506, 2000.
DOI : 10.1093/hmg/9.17.2491

D. Zala, E. Colin, H. Rangone, G. Liot, S. Humbert et al., Phosphorylation of mutant huntingtin at S421 restores anterograde and retrograde transport in neurons, Human Molecular Genetics, vol.17, issue.24, 2008.
DOI : 10.1093/hmg/ddn281

X. Zhang, D. L. Smith, A. B. Meriin, S. Engemann, D. E. Russel et al., A potent small molecule inhibits polyglutamine aggregation in Huntington's disease neurons and suppresses neurodegeneration in vivo, Proceedings of the National Academy of Sciences, vol.102, issue.3, pp.892-897, 2005.
DOI : 10.1073/pnas.0408936102

Y. Q. Zhang and S. K. , Celastrol inhibits polyglutamine aggregation and toxicity though induction of the heat shock response, Journal of Molecular Medicine, vol.72, issue.12, pp.1421-1428, 2007.
DOI : 10.1007/s00109-007-0251-9

H. Y. Zoghbi and O. H. , Glutamine Repeats and Neurodegeneration, Annual Review of Neuroscience, vol.23, issue.1, pp.217-247, 2000.
DOI : 10.1146/annurev.neuro.23.1.217