A. Agrachev, D. Barilari, and U. Boscain, On the Hausdorff volume in sub-Riemannian geometry, Calculus of Variations and Partial Differential Equations, vol.137, issue.3???4, pp.3-4355, 2011.
DOI : 10.1007/s00526-011-0414-y

URL : https://hal.archives-ouvertes.fr/hal-00672260

D. [. Agrachev, U. Barilari, and . Boscain, Introduction to Riemannian and sub-Riemannian geometry (from Hamiltonian viewpoint ), p.2012, 2012.

J. [. Abraham and . Marsden, Foundations of Mechanics, 1978.

A. [. Agrachev and . Sarychev, Filtrations of a Lie algebra of vector fields and nilpotent approximations of control systems, Dokl. Akad. Nauk SSSR: Soviet Math. Dokl, vol.285, issue.36, pp.777-781104, 1987.

Y. [. Burago, S. Burago, and . Ivanov, A Course in Metric Geometry, Graduate Studies in Mathematics, vol.33, 2001.
DOI : 10.1090/gsm/033

]. A. Bel96 and . Bella¨?chebella¨?che, The tangent space in sub-Riemannian geometry, Sub-Riemannian Geometry, Progress in Mathematics. Birkhäuser, 1996.

]. W. Boo86 and . Boothby, An Introduction to Differentiable Manifolds and Riemannian Geometry, 1986.

]. N. Bou72 and . Bourbaki, Groupes et Algèbres de Lie, 1972.

[. Drager, J. Lee, E. Park, and K. Richardson, Smooth distributions are finitely generated, Annals of Global Analysis and Geometry, vol.105, issue.21(3, pp.357-369
DOI : 10.1007/s10455-011-9287-8

URL : http://arxiv.org/abs/1012.5641

F. [. Falbel and . Jean, Measures of transverse paths in sub-Riemannian geometry, Journal d'Analyse Math??matique, vol.21, issue.1, pp.231-246, 2003.
DOI : 10.1007/BF02788789

URL : https://hal.archives-ouvertes.fr/hal-00989831

]. A. Gab95 and . Gabrielov, Multiplicities of zeroes of polynomials on trajectories of polynomial vector fields and bounds on degree of nonholonomy, Mathematical Research Letters, vol.2, pp.437-451, 1995.

]. V. Ger84, . Ya, and . Gershkovich, Two-sided estimates of metrics generated by absolutely non-holonomic distributions on Riemannian manifolds, Sov. Math. Dokl, vol.30, pp.506-510, 1984.

F. [. Ghezzi and . Jean, A new class of $(H^k,1)$-rectifiable subsets of metric spaces, Communications on Pure and Applied Analysis, vol.12, issue.2, 2012.
DOI : 10.3934/cpaa.2013.12.881

URL : https://hal.archives-ouvertes.fr/hal-00623647

F. [. Gabrielov, J. Jean, and . Risler, Multiplicity of polynomials on trajectories of polynomials vector fields in C 3 Carnot-Carathéodory spaces seen from within, Singularities Symposium ? Lojasiewicz Sub-Riemannian Geometry, Progress in Mathematics. Birkhäuser, pp.109-121, 1996.

H. Hermes, Nilpotent and High-Order Approximations of Vector Field Systems, SIAM Review, vol.33, issue.2, pp.238-264, 1991.
DOI : 10.1137/1033050

]. H. Kha01 and . Khalil, Nonlinear Systems [Kup96] I. Kupka. Géométrie sous-riemannienne, In Séminaire N. Bourbaki, vol.817, 1996.

J. M. Lee, Introduction To Smooth Manifolds, Graduate Texts in Mathematics, vol.218, 2003.

L. [. Lee and . Markus, Foundations of Optimal Control Theory, 1967.

H. [. Lafferriere and . Sussmann, Motion planning for controllable systems without drift, Proceedings. 1991 IEEE International Conference on Robotics and Automation, 1991.
DOI : 10.1109/ROBOT.1991.131763

URL : http://citeseerx.ist.psu.edu/viewdoc/summary?doi=

]. J. Mit85 and . Mitchell, On Carnot-Carathéodory metrics, Journal of Differential Geom, vol.21, pp.35-45, 1985.

G. A. Margulis and G. D. Mostow, Some remarks on the definition of tangent cones in a Carnot-Carath??odory space, Journal d'Analyse Math??matique, vol.137, issue.2, pp.299-317, 2000.
DOI : 10.1007/BF02791539

]. R. Mon02 and . Montgomery, A tour of sub-Riemannian geometries, their geodesics and applications. Math. Surveys and Monographs, 2002.

]. T. Nag66 and . Nagano, Linear differential systems with singularities and an application to transitive Lie algebras, J. Math. Soc. Japan, vol.18, pp.398-404, 1966.

E. [. Nagel, S. Stein, and . Wainger, Balls and metrics defined by vector fields I: Basic properties, Acta Mathematica, vol.155, issue.0, pp.103-147, 1985.
DOI : 10.1007/BF02392539

]. L. Rif and . Rifford, Nonholonomic variations: An introduction to sub- Riemannian geometry

E. [. Rothschild and . Stein, Hypoelliptic differential operators and nilpotent groups, Acta Mathematica, vol.137, issue.0, pp.247-320, 1976.
DOI : 10.1007/BF02392419

]. W. Rud70 and . Rudin, Real and complex analysis, 1970.

P. Stefan, Accessible Sets, Orbits, and Foliations with Singularities, Proceedings of the London Mathematical Society, vol.3, issue.4, pp.699-713, 1974.
DOI : 10.1112/plms/s3-29.4.699

URL : http://plms.oxfordjournals.org/cgi/content/short/s3-29/4/699

]. G. Ste86 and . Stefani, On local controllability of a scalar-input system, Theory and Appl. of Nonlinear Control Syst, pp.167-179, 1986.

H. J. Sussmannsus74-]-h and . Sussmann, Orbits of families of vector fields and integrability of distributions, Proc. Amer, pp.171-188349, 1973.
DOI : 10.1090/S0002-9947-1973-0321133-2