index - Statistique, Analyse et Modélisation Multidisciplinaire (SAmos-Marin Mersenne) Accéder directement au contenu

 

Accueil - Statistique, Analyse et Modélisation Multidisciplinaire (SAMM - EA 4543)

Références accompagnées de fichiers

458

 

Références bibliographiques seules

328

 

 

Références par types de documents

 

  

Mots clés

De Pierro's conjecture Change-point detection Infinite horizon Digital Discrete time Pontryagin principle Carte auto-organisatrice Asymptotic behavior Hidden Markov models Données de grande dimension Fast diffusion equation Mean field interaction Cyclic projections Lasso Almost periodic functions Fixed point Binary Diffing Difference equation Markov chains Keyword Finite elements Co-clustering Periodic evolution families Logistic regression Entropy methods Best constants Exponential moments Coopération Prediction Graphe Variational inference Stochastic PDEs 17th century English Clustering Agent-based modeling Anomaly Detection Random graphs Formation des enseignants Belief Propagation Classification Large deviations Fonction publique Adaptive estimation High-dimensional data 46B20 Model selection Almost automorphic function Asymptotic statistic Dimension reduction Cross validation Inclusion Strong convergence Enseignant France Bayesian inference Fonctions presque-périodiques Innovation Differential equations Numérique Mixture models BIC Dynamic networks 49J50 Health Monitoring Functional differential equation Aircraft engine Stochastic Navier-Sokes equations Malliavin calculus 62M10 Classification non supervisée Anomaly detection Optimal control Wavelets EM algorithm Graph Inf-convolution Time series Difference inequation Classification croisée Stochastic block models Exchangeability Graphs Fractional Brownian motion Kernel Causal processes Variational methods Almost periodic function Multiplicative noise SOM Visualisation Functional data Sélection de variables NLP Implicit time discretization Gaussian process Education Evolution equation Banach spaces Variables selection Exponential dichotomy

 

 

 

 

 

 

 

 

L’équipe de recherche SAMM - Statistique, Analyse et Modélisation Multidisciplinaire (EA 4543) est une équipe d’accueil de l’Université Paris 1 Panthéon-Sorbonne qui regroupe des mathématiciens et des informaticiens.

 

L’équipe, créée le 1er janvier 2010, comprend 8 professeurs (dont 2 émérites), 13 maîtres de conférences (dont 1 honoraire), un PRAG, une chargée de gestion, 12 doctorants ou jeunes docteurs et une vingtaine de chercheurs associés.

Les domaines de recherche présents au sein du SAMM couvrent de nombreux champs des mathématiques appliquées et quelques thématiques en informatique :

 

  • Analyse fonctionnelle appliquée,
  • Apprentissage statistique, contrôle optimal,
  • Équations d’évolution,
  • Probabilités et statistique,
  • Graphes, automates cellulaires.

 

Le site de l'équipe de recherche SAMM vous informe des activités scientifiques, nos thèmes de recherche, la formation doctorale proposée, etc.

Pour accéder à l'agenda des séminaires organisés par SAMM, veuillez consulter la rubrique séminaires.

 

SAMM correspond au rapprochement de l'équipe Marin Mersenne (U273, créée en 2003 et propre à l'Université Paris 1 Panthéon-Sorbonne) et de l'équipe SAMOS (créée en 1991 et composante du Centre d'Economie de la Sorbonne (CES-UMR 8174) de 2006 à 2009). 

 

Les documents et publications des chercheurs du SAMOS antérieurs au 1er janvier 2010 sont accessibles par l'intermédiaire de la collection HAL du SAMOS.

 

 

Derniers dépôts

 

 

Statistique, Analyse et Modélisation Multidisciplinaire

SAMM - EA 4543

 

Université Paris 1 Panthéon-Sorbonne
90, rue de Tolbiac
75013 Paris cedex 13
01 44 07 88 04

Site web de SAMM

 

 

Contact

amelie.collin@univ-paris1.fr

 

Recherche par mots clés

 

Consulter la politique des éditeurs pour déposer le texte intégral

 

 

DISPONIBILITÉ EN OPEN ACCESS

64 %

 

 

À l'attention du déposant

  • Le dépôt doit être effectué en accord avec les co-auteurs et dans le respect de la politique des éditeurs
  • La mise en ligne est assujettie à une modération, la direction de HAL se réservant le droit de refuser les articles ne correspondant pas aux critères de l'archive
  • Tout dépôt d'un fichier texte au format pdf est définitif, aucun retrait ne sera effectué après la mise en ligne de l'article
  • Les fichiers textes au format pdf ou les fichiers images composant votre dépôt sont maintenant envoyés au CINES dans un contexte d'archivage à long terme.

 

À l'attention des lecteurs

 Dans un contexte de diffusion électronique, tout auteur conserve ses droits intellectuels, notamment le fait de devoir être correctement cité et reconnu comme l'auteur d'un document.